Indian Statistical Institute, Bangalore Centre

B.Math (Hons.) III Year, First Semester Backpaper Examination - 2013-2014 Complex Analysis January 7, 2014 Instructor: Bhaskar Bagchi

Time: 3 hours

Full Marks : 100.

- 1. (a) If a holomorphic function is injective on its domain then show that it can't have any essential singularity.
 - (b) If $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is an injective meromorphic function then show that $f(z) \equiv \frac{az+l}{cz+d}$ for some constants a, l, c, d.

[10+10=20]

- 2. (a) Define the residue of a holomorphic function at an isolated singularity.
 - (b) State and prove the residue theorem.

[5+15=20]

- 3. (a) If $f: \Omega \to \mathbb{C}$ is a non-constant holomorphic function then show that for each $z \in \Omega$ there is a positive integer m_z such that f is m_z to one on some neighborhood of z.
 - (b) Prove that we can't have $m_z = 2$ for all $z \in \Omega$.

[12+8=20]

- 4. Use the fundamental theorem of Gauss to compute $\int_{-\infty}^{\infty} e^{itx} e^{-x^2/2} dx$ for $t \in \mathbb{R}$. (You may use without proof the fact that for t = 0, the value of this integral is $\sqrt{2\pi}$.) [20]
- 5. Let $\Omega = \{x + iy : x > 1, y \in \mathbb{R}\}$. Define $\zeta : \Omega \to \mathbb{C}$ by $\zeta(z) = \sum_{n=1}^{\infty} n^{-z}$.
 - (a) Prove that this series converges locally uniformly on Ω . Hence deduce that ζ is holomorphic on Ω .
 - (b) Prove that $\zeta(z) \neq 0$ for z in Ω .

[12+8=20]